Dynamical Signatures of Living Systems Michail Zak Center for Space microelectronics Technology Jet Propulsion Laboratory California Institute of Technology Pasadena, CA 91109 One of the main challenges in modeling living systems is to distinguish a random walk of physical origin (for instance, Brownian motions) from those of biological origin, and that will constitute the starting point of the proposed approach. As conjectured in [1], the biological random walk must be nonlinear. Indeed, any stochastic Markov process can be described by linear Fokker-Planck equation (or its discretized version); only those types of processes have been observed in the inanimate world. However, all such processes always converge to a stable (ergodic or periodic) state, i.e., to the states of a lower complexity and higher entropy. At the same time, the evolution of living systems is directed toward a higher level of complexity if complexity is associated with a number of structural variations. The simplest way to mimic such a tendency is to incorporate a nonlinearity into the random walk; then the probability evolution will attain the features of nonlinear diffusion equation: the formation and dissipation of shock waves initiated by small shallow wave disturbances. As a result, the evolution never "dies": it produces new different configurations which accompanied by increase or decrease of entropy (the decrease takes place during formation of shock waves, the increase-during their dissipation). In other words, the evolution can be directed "against the second law of thermodynamics" [6] by forming patterns outside of equilibrium in the probability space. Due to that, a specie is not locked up in a certain pattern of behavior: it still can perform a variety of motions, and only the statistics of these motions is constrained by this pattern. It should be emphasized that such a "twist" is based upon the concept of reflection, i.e., the existence of the self-image (adopted from psychology). The model consists of a generator of stochastic processes which represents the motor dynamics in the form of nonlinear random walks, and a simulator of the nonlinear version of the diffusion equation which represents the mental dynamics. It has been demonstrated that coupled mental-motor dynamics can simulate emerging self-organization, prey-predator games, collaboration and competition, "collective brain," etc. 1. M. Zak, Physical Invariants of biosignatures Physics Letters A, 1999 (in press)